

Probability & Statistics

BITS Pilani K K Birla Goa Campus

Dr. Jajati Keshari Sahoo Department of Mathematics

TEST OF HYPOTHESIS

There are many problems in which, rather then estimating the value of a parameter, we need to decide whether to accept or reject **statement** about the parameter. This statement is called **hypothesis** and the decision making procedure about the hypothesis is called **Hypothesis-Testing**.

For e.g.

- a) The teaching method in both the institutes are effective
- b) The average IQ of normal human being is 113

Type of Hypothesis

a) NULL HYPOTHESIS

b) ALTERNATIVE (or Research) HYPOTHESIS

Type of Hypothesis

Null Hypothesis H₀

It is a statistical hypothesis that contains a statement of equality such as \geq , \leq Or =

Alternate Hypothesis H₁

It is a statement that must be **true** when H_0 is **false** and it contains a statement of inequality such as

General form of Hypothesis testing

Example (Type-1): $H_0: \mu \le k$ or $H_0: \mu = k$ $H_1: \mu > k$ $H_1: \mu > k$ (called Right -tailed test) Example (Type-2): $H_0: \mu \ge k$ or $H_0: \mu = k$ $H_1: \mu < k \qquad H_1: \mu < k$ (called Left-tailed test) Example (Type-3): $H_0: \mu = k$ $H_1: \mu \neq k$ (called Two-tailed test)

Setting the Null and Alternative Hypothesis

Example:

State the null and alternative hypothesis for the following problem. A university publicizes that proportion of its students who graduate in 4 years is 82%.

Ans: The proportion 82% can be written as p = 0.82 contains the statement of equality and it becomes the null hypotheses. So

```
H_0: p = 0.82
H_1: p≠ 0.82
```


Setting the Null and Alternate Hypothesis

Example:

A Manufacturer of new drug claims that his drug cures at Least 90% patients of certain disease. A prospective buyer has to take decision to buy or not to buy the new drug. State the two statements for the prospective buyer.

Ans: Let p be the proportion of the patients of this disease cured by the new drug out of those who are treated by the new drug. So

```
H_0: p \le 0.90
H_1: p > 0.90
```


Testing of Hypothesis

- When we perform a hypothesis testing we make one of the two decisions:
 - i) Reject the null hypothesis orii) Accept the null hypothesis
- As our decision is based on the sample rather than the entire population there is always possibility we will make wrong decision.

TYPES OF ERROR

In testing a statistical hypothesis, we will encounter two types of errors:

	H_0 is True	H_0 is False or
		H_1 is True
Accept H_0	Correct decision	Type II error
Reject H_0	Type I error	Correct decision

TERMINOLOGY

- **Type I error**: The error is made when the null hypothesis rejected even it is true.
- **Type II error**: The error is made when the null hypothesis (H_0) accepted when it false (or H_1 is true).
- Size of the test / Level of significance of the test / Alpha (α):
 - α = Probability of committing Type-I error.
 - = $P(\text{Rejecting H}_0 \text{ when H}_0 \text{ is true})$

TERMINOLOGY

- Beta (β):
 - β = Probability of committing Type-II error.
 - = $P(\text{Accepting } H_0 \text{ when } H_1 \text{ is true})$
- Power of the Test (1-β):

 $1-\beta = P(\text{Rejecting H}_0 \text{ when H}_1 \text{ is true})$

- Test Statistic: The decision is made based on the value of some statistic and the corresponding statistic is called test statistic.
- **Critical or Rejection region:** The values of the test statistic on which the null hypothesis is rejected.

A process for making steel pipe is under control if the diameter of the pipe has a mean of 3.0000 inches with a standard deviation of 0.0250 inch. To check whether the process is under control, a random sample of size n = 30 is taken each day and the null hypothesis $\mu = 3.0000$ is rejected if \overline{X} is less than 2.9960 or greater than 3.0040. Find

- (a) The probability of a Type I error
- (b) The probability of a Type II error when $\mu = 3.0050$ inches.

Solution

Solution: n = 30, $\mu = 3.0000$, $\sigma = 0.0250$

(a)
$$\alpha = P(\text{Type I error}) = P(\overline{X} < 2.9960 \text{ or } \overline{X} > 3.0040)$$

 $= P(\overline{X} < 2.9960) + P(\overline{X} > 3.0040)$
 $= P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{2.9960 - 3.0000}{0.0250/\sqrt{30}}\right) + P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} > \frac{3.0040 - 3.0000}{0.0250/\sqrt{30}}\right)$
 $= P(Z < -0.876) + 1 - P(Z < 0.876)$
since $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ will be random variable with approximately

standard normal distribution.

$$\alpha = F(-0.876) + 1 - F(0.876) = 2F(-0.876) = 0.381$$

Solution

(b)
$$\beta = P(\text{Type II error}) = P(2.9960 < \overline{X} < 3.0040) \text{ (when } \mu = 3.0050)$$

$$= P\left(\frac{2.9960 - 3.0050}{0.0250/\sqrt{30}} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{3.0040 - 3.0050}{0.0250/\sqrt{30}}\right)$$

$$= P(-1.97 < Z < -.219)$$

$$\beta = F(-.219) - F(-1.97)$$

$$= 0.4133 - 0.0244 = 0.3889$$
since $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ will be random variable with approximat ely
standard normal distributi on.

Problem

Suppose X has Poisson distribution with parameter λ . To test H_0 : $\lambda = 0.1$ versus H_1 : $\lambda > 0.1$, the following procedure is used: A random sample of size 20 is taken from X and H_0 is rejected if $\sum_{i=1}^{20} X_i \ge 4$. Find α and β (when $\lambda = 0.2$).

Hypothesis Concerning On Mean when variance is known

Test concerning on mean for large sample and known σ

Critical Regions for testing on population mean when σ known)

Alternative hypothesis	Critical Region:
$\mu < \mu_0$	$C=\{Z: Z < - z_{\alpha}\}$
$\mu > \mu_0$	$C=\{Z: Z > z_{\alpha}\}$
$\mu \neq \mu_0$	$C = \{ Z : Z < - z_{\alpha/2} \text{ or } Z > z_{\alpha/2} \}$

where
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
 is called the test statistic.

Hypothesis Concerning On Mean when variance is known

Note:

- In Previous Test we assume the sample size is large (in practice, large means n ≥ 25)
- If the sample size is small (say n < 25) and σ is known then we can not use previous critical regions but if population is normal then same critical region will work.

Hypothesis Concerning On Mean

Example: According to the norms established for mechanical aptitude test, persons who are 18 years old should average 73.2 with a standard deviation of 8.6. If 45 randomly selected persons of that age averaged 76.7, test the null hypothesis μ = 73.2 against the alternative hypothesis μ > 73.2 at the 0.01 level of significance.

Solution: Given $\mu_0 = 73.2$

- **1**. Null hypothesis H_0 : $\mu = 73.2$ Alternative hypothesis H_1 : $\mu > 73.2$
- **2.** Level of significance: $\alpha = 0.01$
- *3. Criterion*: Using a normal approximation for the distribution of the sample mean we reject the null hypothesis when

$$Z > Z_{\alpha} = 2.33$$
 where $Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$

4. Calculations: Given $\mu_0 = 73.2$, $\sigma = 8.6$, n = 45 and $\overline{X} = 76.7$

$$Z = \frac{76.7 - 73.2}{8.6/\sqrt{45}} = 2.73$$

5. *Decision*: Since Z = 2.73 > 2.33, the null hypothesis that $\mu = 73.2$ is rejected at the 0.01 level of significance.

Hypothesis Concerning On Normal Mean when variance is unknown

Test concerning on mean of Normal population for any Sample size and unknown σ

Critical Regions for testing on normal mean when σ unknown)

Alternative hypothesis	Critical Region:
$\mu < \mu_0$	$C = \{ T_{n-1} : T_{n-1} < -t_{\alpha} \}$
$\mu > \mu_0$	$C = \{T_{n-1}: T_{n-1} > t_{\alpha}\}$
$\mu \neq \mu_0$	$C = \{T_{n-1}: T_{n-1} < -t_{\alpha/2} \text{ or } T_{n-1} > t_{\alpha/2} \}$

where
$$T_{n-1} = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$$
 is called the test statistic.

Note:

- In Previous Test we assume the population has normal distribution.
- ★ If the sample size is large (say $n \ge 25$), population is non normal and σ is unknown then we can still use the previous critical regions. This means we can scrap the assumption normality when *n* is large.

Hypotheses Concerning On Mean

Example: Test run with 6 models of an experimental engine showed that they operated for 24, 28, 21, 23, 32 and 22 minutes with a gallon of a certain kind of fuel. If the probability of Type I error is 0.01, is this evidence against a hypothesis that on the average this kind of engine will operate for at least 29 minutes per gallon with this kind of fuel? Assume **normality**.

Solution:

Given
$$n = 6$$
, $x_1 = 24$, $x_2 = 28$, $x_3 = 21$, $x_4 = 23$, $x_5 = 32$, $x_6 = 22$.

$$\Rightarrow X = 25 \text{ and } S = 4.195$$

Hypotheses Concerning On Mean

- 1. Null hypothesis $H_0: \mu \ge 29$ Alternative hypothesis $H_1: \mu < 29$
- **2.** Level of significance: $\alpha = 0.01$
- 3. Criterion: Assuming the population is normal we can use the critical region as

 $C = \{ T_{n-1} : T_{n-1} < -t_{\alpha} \} \text{ where}$

$$T_{n-1} = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}.$$

- 4. Calculations: Given $\mu_0 = 29$, S = 4.195 n = 6, $\overline{X} = 25$, and $t_{\alpha} = t_{0.01} = -3.365$. $T_5 = \frac{25 - 29}{4.195 / \sqrt{6}} = -2.336$.
- **5.** *Decision*: Since $T_5 = -2.336 > -3.365$, the null hypothesis that $\mu = 29$ is accepted at the 0.01 level of significance.

Five steps of hypothesis testing

- We formulate a null hypothesis and an appropriate alternative hypothesis
- We specify the probability of a type I error; if possible, desired or necessary we may also specify the probabilities of Type II errors for particular alternatives.
- Based on the sampling distribution of an appropriate statistic, we construct a criterion for testing the null hypothesis against the given alternative.
- We calculate from the data the value of the statistic on which the decision is to be based.
- We decide whether to reject the null hypothesis or whether to fail to reject it.

NOTE: Large sample (In practice, $n \ge 25$).